papers AI Learner
The Github is limit! Click to go to the new site.

Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications

2019-02-18
Xiaoxiao Du, Alina Zare

Abstract

In classifier (or regression) fusion the aim is to combine the outputs of several algorithms to boost overall performance. Standard supervised fusion algorithms often require accurate and precise training labels. However, accurate labels may be difficult to obtain in many remote sensing applications. This paper proposes novel classification and regression fusion models that can be trained given ambiguosly and imprecisely labeled training data in which training labels are associated with sets of data points (i.e., “bags”) instead of individual data points (i.e., “instances”) following a multiple instance learning framework. Experiments were conducted based on the proposed algorithms on both synthetic data and applications such as target detection and crop yield prediction given remote sensing data. The proposed algorithms show effective classification and regression performance.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1803.04048

PDF

http://arxiv.org/pdf/1803.04048


Similar Posts

Comments