papers AI Learner
The Github is limit! Click to go to the new site.

Metal induced gap states and Schottky barrier heights at non-reactive GaN/noble metal interfaces

2000-02-23
S. Picozzi, A. Continenza, G. Satta, S. Massidda, A. J. Freeman

Abstract

We present ab-initio local density FLAPW calculations on non-reactive N-terminated [001] ordered GaN/Ag and GaN/Au interfaces and compare the results (such as metal induced gap states and Schottky barrier heights) with those obtained for GaN/Al, in order to understand the dependence of the relevant electronic properties on the deposited metal. Our results show that the density of gap states is appreciable only in the first semiconductor layer close to the interface. The decay length of the gap states in the semiconductor side is about 2.0 $\pm$ 0.1 \AA $:$ and is independent of the deposited metal, therefore being to a good extent a bulk property of GaN. Our calculated values of the Schottky barrier heights are $\Phi_{B_p}(GaN/Ag)$ = 0.87 eV and $\Phi_{B_p}(GaN/Au)$ = 1.08 eV; both values are smaller than the GaN/Al value ($\Phi_{B_p}(GaN/Al)$ = 1.51 eV) and this quite large spread of values excludes the possibility of a Fermi level pinning within the GaN band gap. Because of the low screening in GaN, the potential barrier at the junction is strongly affected by the structural arrangement of the first metal layer at the interface. This leads to quite large variations of the Schottky barrier height as a function of the metal, in contrast with the behavior of GaAs/metal interfaces.

Abstract (translated by Google)
URL

https://arxiv.org/abs/cond-mat/0002353

PDF

https://arxiv.org/pdf/cond-mat/0002353


Similar Posts

Comments