Abstract
A number of diverse bulk properties of the zincblende and wurtzite III-V nitrides AlN, GaN, and InN, are predicted from first principles within density functional theory using the plane-wave ultrasoft pseudopotential method, within both the LDA (local density) and GGA (generalized gradient) approximations to the exchange-correlation functional. Besides structure and cohesion, we study formation enthalpies (a key ingredient in predicting defect solubilities and surface stability), spontaneous polarizations and piezoelectric constants (central parameters for nanostructure modeling), and elastic constants. Our study bears out the relative merits of the two density functional approaches in describing diverse properties of the III-V nitrides (and of the parent species N$_2$, Al, Ga, and In), and leads us to conclude that the GGA approximation, associated with high-accuracy techniques such as multiprojector ultrasoft pseudopotentials or modern all-electron methods, is to be preferred in the study of III-V nitrides.
Abstract (translated by Google)
URL
https://arxiv.org/abs/cond-mat/0011434