Abstract
We present the SAMMI lightweight object detection method which has a high level of accuracy and robustness, and which is able to operate in an environment with a large number of cameras. Background modeling is based on DCT coefficients provided by cameras. Foreground detection uses similarity in temporal characteristics of adjacent blocks of pixels, which is a computationally inexpensive way to make use of object coherence. Scene model updating uses the approximated median method for improved performance. Evaluation at pixel level and application level shows that SAMMI object detection performs better and faster than the conventional Mixture of Gaussians method.
Abstract (translated by Google)
URL
https://arxiv.org/abs/0803.1586