Abstract
Results of the first ab initio simulations of InN/GaN multiquantum well (MQW) system are presented. The DFT results confirm the presence of the polarization charge at InN/GaN interfaces, i.e. at polar InN/GaN heterostructures. These results show the potential jumps which is related to the presence of dipole layer at these interfaces. An electrostatic polarization analysis shows that the energy minimum condition can be used to obtain the field in InN/GaN system, employing standard polarization parameters. DFT results are in good agreement with polarization data confirming the existence of electric field leading to separation of electron and holes in QWs and emergence of Quantum Confined Stark Effect (QCSE).
Abstract (translated by Google)
URL
https://arxiv.org/abs/0911.3036