Abstract
When someone mentions the name of a known person we immediately recall her face and possibly many other traits. This is because we possess the so-called associative memory, that is the ability to correlate different memories to the same fact or event. Associative memory is such a fundamental and encompassing human ability (and not just human) that the network of neurons in our brain must perform it quite easily. The question is then whether electronic neural networks (electronic schemes that act somewhat similarly to human brains) can be built to perform this type of function. Although the field of neural networks has developed for many years, a key element, namely the synapses between adjacent neurons, has been lacking a satisfactory electronic representation. The reason for this is that a passive circuit element able to reproduce the synapse behaviour needs to remember its past dynamical history, store a continuous set of states, and be “plastic” according to the pre-synaptic and post-synaptic neuronal activity. Here we show that all this can be accomplished by a memory-resistor (memristor for short). In particular, by using simple and inexpensive off-the-shelf components we have built a memristor emulator which realizes all required synaptic properties. Most importantly, we have demonstrated experimentally the formation of associative memory in a simple neural network consisting of three electronic neurons connected by two memristor-emulator synapses. This experimental demonstration opens up new possibilities in the understanding of neural processes using memory devices, an important step forward to reproduce complex learning, adaptive and spontaneous behaviour with electronic neural networks.
Abstract (translated by Google)
URL
https://arxiv.org/abs/0905.2935