Abstract
The identification, and subsequent discovery, of fast radio transients through blind-search surveys requires a large amount of processing power, in worst cases scaling as $\mathcal{O}(N^3)$. For this reason, survey data are generally processed offline, using high-performance computing architectures or hardware-based designs. In recent years, graphics processing units have been extensively used for numerical analysis and scientific simulations, especially after the introduction of new high-level application programming interfaces. Here we show how GPUs can be used for fast transient discovery in real-time. We present a solution to the problem of de-dispersion, providing performance comparisons with a typical computing machine and traditional pulsar processing software. We describe the architecture of a real-time, GPU-based transient search machine. In terms of performance, our GPU solution provides a speed-up factor of between 50 and 200, depending on the parameters of the search.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1107.2516