Abstract
We report on the design, fabrication, and characterization of GaN interband tunnel junction showing forward tunneling characteristics. We have achieved very high forward tunneling currents (153 mA/cm2 at 10 mV, and 17.7 A/cm2 peak current) in polarization-engineered GaN/InGaN/GaN heterojunction diodes grown by plasma assisted molecular beam epitaxy. We also report the observation of repeatable negative differential resistance in interband III-Nitride tunnel junctions, with peak-valley current ratio (PVCR) of 4 at room temperature. The forward current density achieved in this work meets the typical current drive requirements of a multi-junction solar cell.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1108.4075