Abstract
We observed different temperature-dependent behaviors of steady and transient emission properties in dry-etched InGaN/GaN multiple-quantum-well (MQW) nanorods and the parent MQWs. To clarify the impacts of nanofabrication on the emission properties, time-resolved photoluminescence spectra were recorded at various temperatures with carrier density in different regimes. The confinement of carrier transport was observed to play an important role to the emission properties in nanorods, inducing different temperature-dependent photoluminescence decay rates between the nanorods and MQWs. Moreover, together with other effects, such as surface damages and partial relaxation of the strain, the confinement effect causes faster recombination of carriers in nanorods.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1111.4010