Abstract
Topological insulator (TI) states have been demonstrated in materials with narrow gap and large spin-orbit interactions (SOI). Here we demonstrate that nanoscale engineering can also give rise to a TI state, even in conventional semiconductors with sizable gap and small SOI. Based on advanced first-principles calculations combined with an effective low-energy k*p Hamiltonian, we show that the intrinsic polarization of materials can be utilized to simultaneously reduce the energy gap and enhance the SOI, driving the system to a TI state. The proposed system consists of ultrathin InN layers embedded into GaN, a layer structure that is experimentally achievable.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1205.2912