Abstract
Starting with empirical tight-binding band structures, the branch-point (BP) energies and resulting valence band offsets (VBOs) for the zincblende phase of InN, GaN and AlN are calculated from their k-averaged midgap energy. Furthermore, the directional dependence of the BPs of GaN and AlN is discussed using the Green’s function method of Tersoff. We then show how to obtain the BPs for binary semiconductor alloys within a band-diagonal representation of the coherent potential approximation (CPA) and apply this method to cubic AlGaN alloys. The resulting band offsets show good agreement to available experimental and theoretical data from the literature. Our results can be used to determine the band alignment in isovalent heterostructures involving pure cubic III-nitrides or AlGaN alloys for arbitrary concentrations.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1302.1725