papers AI Learner
The Github is limit! Click to go to the new site.

Analysis and Evaluation of the Link and Content Based Focused Treasure-Crawler

2013-06-01
Ali Seyfi

Abstract

Indexing the Web is becoming a laborious task for search engines as the Web exponentially grows in size and distribution. Presently, the most effective known approach to overcome this problem is the use of focused crawlers. A focused crawler applies a proper algorithm in order to detect the pages on the Web that relate to its topic of interest. For this purpose we proposed a custom method that uses specific HTML elements of a page to predict the topical focus of all the pages that have an unvisited link within the current page. These recognized on-topic pages have to be sorted later based on their relevance to the main topic of the crawler for further actual downloads. In the Treasure-Crawler, we use a hierarchical structure called the T-Graph which is an exemplary guide to assign appropriate priority score to each unvisited link. These URLs will later be downloaded based on this priority. This paper outlines the architectural design and embodies the implementation, test results and performance evaluation of the Treasure-Crawler system. The Treasure-Crawler is evaluated in terms of information retrieval criteria such as recall and precision, both with values close to 0.5. Gaining such outcome asserts the significance of the proposed approach.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1306.0054

PDF

https://arxiv.org/pdf/1306.0054


Similar Posts

Comments