Abstract
Question answering system can be seen as the next step in information retrieval, allowing users to pose question in natural language and receive compact answers. For the Question answering system to be successful, research has shown that the correct classification of question with respect to the expected answer type is requisite. We propose a novel architecture for question classification and searching in the index, maintained on the basis of expected answer types, for efficient question answering. The system uses the criteria for Answer Relevance Score for finding the relevance of each answer returned by the system. On analysis of the proposed system, it has been found that the system has shown promising results than the existing systems based on question classification.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1307.6937