Abstract
There is cognitive, neurological, and computational support for the hypothesis that defocusing attention results in divergent or associative thought, conducive to insight and finding unusual connections, while focusing attention results in convergent or analytic thought, conducive to rule-based operations. Creativity appears to involve both. It is widely believed that it is possible to escape mental fixation by spontaneously and temporarily engaging in a more associative mode of thought. The resulting insight (if found) may be refined in a more analytic mode of thought. The questions addressed here are: (1) how does the architecture of memory support these two modes of thought, and (2) what is happening at the neural level when one shifts between them? Recent advances in neuroscience shed light on this. Activated cell assemblies are composed of multiple neural cliques, groups of neurons that respond differentially to general or context-specific aspects of a situation. I refer to neural cliques that would not be included in the assembly if one were in an analytic mode, but would be if one were in an associative mode, as neurds. It is posited that the shift to a more associative mode of thought is accomplished by recruiting neurds that respond to abstract or atypical microfeatures of the problem or task. Since memory is distributed and content-addressable, this fosters the forging of associations to potentially relevant items previously encoded in those neurons. Thus it is proposed that creative thought not by searching a space of predefined alternatives and blindly tweaking those that hold promise, but by evoking remotely associated items through the recruitment of neurds in a distributed, content-addressable memory.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1308.5037