Abstract
A high threshold voltage enhancement-mode GaN HEMT with p-type doped buffer is discussed and simulated. Analytical expressions are derived to explain the role of buffer capacitance in designing and enhancing threshold voltage. Simulations of the proposed device with p-type buffer show threshold voltages above 5 V, and a positive shift in threshold voltage as the oxide capacitance is reduced, thus enabling threshold voltage tunability over an unprecedented range for GaN-based HEMTs. The electric field profiles, breakdown performance, on-resistance and delay tradeoffs in the proposed pGaN back HEMT device are also discussed.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1511.04438