Abstract
Wireless Gigabit (WiGig) access points (APs) using 60 GHz unlicensed frequency band are considered as key enablers for future Gbps WLANs. Due to its short range transmission with high susceptibility to path blocking, a multiple number of WiGig APs should be installed to fully cover a typical target environment. However, using autonomously operated WiGig APs with IEEE 802.11ad DCF, the exhaustive search analog beamforming and the maximum received power based autonomous users association prevent the establishment of optimal WiGig concurrent links that maximize the total system throughput in random access scenarios. In this paper, we formulate the problem of WiGig concurrent transmissions in random access scenarios as an optimization problem, then we propose a Wi-Fi/WiGig coordination architecture to solve it. The proposed coordinated Wi-Fi/WiGig WLAN is based on a tight coordination between the 5 GHz (Wi-Fi) and the 60 GHz (WiGig) unlicensed frequency bands. By which, the wide coverage Wi-Fi band controls the establishment of the WiGig concurrent links. Statistical learning using Wi-Fi fingerprinting is used for estimating the best candidate AP and its best beam identification (ID) for establishing the WiGig concurrent link without making any interference to the existing WiGig data links.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1601.04797