papers AI Learner
The Github is limit! Click to go to the new site.

Analysing domain shift factors between videos and images for object detection

2016-01-27
Vicky Kalogeiton, Vittorio Ferrari, Cordelia Schmid

Abstract

Object detection is one of the most important challenges in computer vision. Object detectors are usually trained on bounding-boxes from still images. Recently, video has been used as an alternative source of data. Yet, for a given test domain (image or video), the performance of the detector depends on the domain it was trained on. In this paper, we examine the reasons behind this performance gap. We define and evaluate different domain shift factors: spatial location accuracy, appearance diversity, image quality and aspect distribution. We examine the impact of these factors by comparing performance before and after factoring them out. The results show that all four factors affect the performance of the detectors and their combined effect explains nearly the whole performance gap.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1501.01186

PDF

https://arxiv.org/pdf/1501.01186


Similar Posts

Comments