Abstract
Spatial awareness in mammals is based on an internalized representation of the environment, encoded by large networks of spiking neurons. While such representations can last for a long time, the underlying neuronal network is transient: neuronal cells die every day, synaptic connections appear and disappear, the networks constantly change their architecture due to various forms of synaptic and structural plasticity. How can a network with a dynamic architecture encode a stable map of space? We address this question using a physiological model of a “flickering” neuronal network and demonstrate that it can maintain a robust topological representation of space.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1602.00681