Abstract
We study the nature of excitons bound to I1 basal plane stacking faults in ensembles of ultrathin GaN nanowires by continuous-wave and time-resolved photoluminescence spectroscopy. These ultrathin nanowires, obtained by the thermal decomposition of spontaneously formed GaN nanowire ensembles, are tapered and have tip diameters down to 6 nm. With decreasing nanowire diameter, we observe a strong blue shift of the transition originating from the radiative decay of stacking fault-bound excitons. Moreover, the radiative lifetime of this transition in the ultrathin nanowires is independent of temperature up to 60 K and significantly longer than that of the corresponding transition in as-grown nanowires. These findings reveal a zero-dimensional character of the confined exciton state and thus demonstrate that I1 stacking faults in ultrathin nanowires act as genuine quantum dots.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1601.01162