papers AI Learner
The Github is limit! Click to go to the new site.

Object Contour Detection with a Fully Convolutional Encoder-Decoder Network

2016-03-15
Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, Ming-Hsuan Yang

Abstract

We develop a deep learning algorithm for contour detection with a fully convolutional encoder-decoder network. Different from previous low-level edge detection, our algorithm focuses on detecting higher-level object contours. Our network is trained end-to-end on PASCAL VOC with refined ground truth from inaccurate polygon annotations, yielding much higher precision in object contour detection than previous methods. We find that the learned model generalizes well to unseen object classes from the same super-categories on MS COCO and can match state-of-the-art edge detection on BSDS500 with fine-tuning. By combining with the multiscale combinatorial grouping algorithm, our method can generate high-quality segmented object proposals, which significantly advance the state-of-the-art on PASCAL VOC (improving average recall from 0.62 to 0.67) with a relatively small amount of candidates ($\sim$1660 per image).

Abstract (translated by Google)
URL

https://arxiv.org/abs/1603.04530

PDF

https://arxiv.org/pdf/1603.04530


Similar Posts

Comments