papers AI Learner
The Github is limit! Click to go to the new site.

A Survey on Object Detection in Optical Remote Sensing Images


Abstract

Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey 1) template matching-based object detection methods, 2) knowledge-based object detection methods, 3) object-based image analysis (OBIA)-based object detection methods, 4) machine learning-based object detection methods, and 5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1603.06201

PDF

https://arxiv.org/pdf/1603.06201


Similar Posts

Comments