Abstract
Millimeter wave (mmWave) communication is envisioned as a cornerstone to fulfill the data rate requirements for fifth generation (5G) cellular networks. In mmWave communication, beamforming is considered as a key technology to combat the high path-loss, and unlike in conventional microwave communication, beamforming may be necessary even during initial access/cell search. Among the proposed beamforming schemes for initial cell search, analog beamforming is a power efficient approach but suffers from its inherent search delay during initial access. In this work, we argue that analog beamforming can still be a viable choice when context information about mmWave base stations (BS) is available at the mobile station (MS). We then study how the performance of analog beamforming degrades in case of angular errors in the available context information. Finally, we present an analog beamforming receiver architecture that uses multiple arrays of Phase Shifters and a single RF chain to combat the effect of angular errors, showing that it can achieve the same performance as hybrid beamforming.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1605.01930