papers AI Learner
The Github is limit! Click to go to the new site.

R-FCN: Object Detection via Region-based Fully Convolutional Networks

2016-06-21
Jifeng Dai, Yi Li, Kaiming He, Jian Sun

Abstract

We present region-based, fully convolutional networks for accurate and efficient object detection. In contrast to previous region-based detectors such as Fast/Faster R-CNN that apply a costly per-region subnetwork hundreds of times, our region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, we propose position-sensitive score maps to address a dilemma between translation-invariance in image classification and translation-variance in object detection. Our method can thus naturally adopt fully convolutional image classifier backbones, such as the latest Residual Networks (ResNets), for object detection. We show competitive results on the PASCAL VOC datasets (e.g., 83.6% mAP on the 2007 set) with the 101-layer ResNet. Meanwhile, our result is achieved at a test-time speed of 170ms per image, 2.5-20x faster than the Faster R-CNN counterpart. Code is made publicly available at: this https URL

Abstract (translated by Google)
URL

https://arxiv.org/abs/1605.06409

PDF

https://arxiv.org/pdf/1605.06409


Similar Posts

Comments