papers AI Learner
The Github is limit! Click to go to the new site.

Review Networks for Caption Generation

2016-10-27
Zhilin Yang, Ye Yuan, Yuexin Wu, Ruslan Salakhutdinov, William W. Cohen

Abstract

We propose a novel extension of the encoder-decoder framework, called a review network. The review network is generic and can enhance any existing encoder- decoder model: in this paper, we consider RNN decoders with both CNN and RNN encoders. The review network performs a number of review steps with attention mechanism on the encoder hidden states, and outputs a thought vector after each review step; the thought vectors are used as the input of the attention mechanism in the decoder. We show that conventional encoder-decoders are a special case of our framework. Empirically, we show that our framework improves over state-of- the-art encoder-decoder systems on the tasks of image captioning and source code captioning.

Abstract (translated by Google)

我们提出了一个新的扩展编码器 - 解码器框架,称为评论网络。审查网络是通用的,可以增强任何现有的编码器 - 解码器模型:在本文中,我们考虑使用CNN和RNN编码器的RNN解码器。评论网络对编码器隐藏状态进行多个关注机制的评论步骤,并在每个评论步骤之后输出思想向量;思想向量被用作解码器中的关注机制的输入。我们展示了传统的编码器解码器是我们框架的一个特例。实证上,我们表明,我们的框架在图像字幕和源代码字幕任务上优于最先进的编码器 - 解码器系统。

URL

https://arxiv.org/abs/1605.07912

PDF

https://arxiv.org/pdf/1605.07912


Similar Posts

Comments