Abstract
Neural Machine Translation (NMT) is a new approach for Machine Translation (MT), and due to its success, it has absorbed the attention of many researchers in the field. In this paper, we study NMT model on Persian-English language pairs, to analyze the model and investigate the appropriateness of the model for scarce-resourced scenarios, the situation that exists for Persian-centered translation systems. We adjust the model for the Persian language and find the best parameters and hyper parameters for two tasks: translation and transliteration. We also apply some preprocessing task on the Persian dataset which yields to increase for about one point in terms of BLEU score. Also, we have modified the loss function to enhance the word alignment of the model. This new loss function yields a total of 1.87 point improvements in terms of BLEU score in the translation quality.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1701.01854