papers AI Learner
The Github is limit! Click to go to the new site.

Cross-modal Deep Metric Learning with Multi-task Regularization

2017-04-05
Xin Huang, Yuxin Peng

Abstract

DNN-based cross-modal retrieval has become a research hotspot, by which users can search results across various modalities like image and text. However, existing methods mainly focus on the pairwise correlation and reconstruction error of labeled data. They ignore the semantically similar and dissimilar constraints between different modalities, and cannot take advantage of unlabeled data. This paper proposes Cross-modal Deep Metric Learning with Multi-task Regularization (CDMLMR), which integrates quadruplet ranking loss and semi-supervised contrastive loss for modeling cross-modal semantic similarity in a unified multi-task learning architecture. The quadruplet ranking loss can model the semantically similar and dissimilar constraints to preserve cross-modal relative similarity ranking information. The semi-supervised contrastive loss is able to maximize the semantic similarity on both labeled and unlabeled data. Compared to the existing methods, CDMLMR exploits not only the similarity ranking information but also unlabeled cross-modal data, and thus boosts cross-modal retrieval accuracy.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1703.07026

PDF

https://arxiv.org/pdf/1703.07026


Similar Posts

Comments