papers AI Learner
The Github is limit! Click to go to the new site.

Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN

2017-06-13
Lvmin Zhang, Yi Ji, Xin Lin

Abstract

Recently, with the revolutionary neural style transferring methods, creditable paintings can be synthesized automatically from content images and style images. However, when it comes to the task of applying a painting’s style to an anime sketch, these methods will just randomly colorize sketch lines as outputs and fail in the main task: specific style tranfer. In this paper, we integrated residual U-net to apply the style to the gray-scale sketch with auxiliary classifier generative adversarial network (AC-GAN). The whole process is automatic and fast, and the results are creditable in the quality of art style as well as colorization.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1706.03319

PDF

https://arxiv.org/pdf/1706.03319


Similar Posts

Comments