papers AI Learner
The Github is limit! Click to go to the new site.

Structure Optimization for Deep Multimodal Fusion Networks using Graph-Induced Kernels

2017-07-03
Dhanesh Ramachandram, Michal Lisicki, Timothy J. Shields, Mohamed R. Amer, Graham W. Taylor

Abstract

A popular testbed for deep learning has been multimodal recognition of human activity or gesture involving diverse inputs such as video, audio, skeletal pose and depth images. Deep learning architectures have excelled on such problems due to their ability to combine modality representations at different levels of nonlinear feature extraction. However, designing an optimal architecture in which to fuse such learned representations has largely been a non-trivial human engineering effort. We treat fusion structure optimization as a hyper-parameter search and cast it as a discrete optimization problem under the Bayesian optimization framework. We propose a novel graph-induced kernel to compute structural similarities in the search space of tree-structured multimodal architectures and demonstrate its effectiveness using two challenging multimodal human activity recognition datasets.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1707.00750

PDF

https://arxiv.org/pdf/1707.00750


Similar Posts

Comments