papers AI Learner
The Github is limit! Click to go to the new site.

Ensembling Factored Neural Machine Translation Models for Automatic Post-Editing and Quality Estimation

2017-07-15
Chris Hokamp

Abstract

This work presents a novel approach to Automatic Post-Editing (APE) and Word-Level Quality Estimation (QE) using ensembles of specialized Neural Machine Translation (NMT) systems. Word-level features that have proven effective for QE are included as input factors, expanding the representation of the original source and the machine translation hypothesis, which are used to generate an automatically post-edited hypothesis. We train a suite of NMT models that use different input representations, but share the same output space. These models are then ensembled together, and tuned for both the APE and the QE task. We thus attempt to connect the state-of-the-art approaches to APE and QE within a single framework. Our models achieve state-of-the-art results in both tasks, with the only difference in the tuning step which learns weights for each component of the ensemble.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1706.05083

PDF

https://arxiv.org/pdf/1706.05083


Comments

Content