papers AI Learner
The Github is limit! Click to go to the new site.

Guided Open Vocabulary Image Captioning with Constrained Beam Search

2017-07-19
Peter Anderson, Basura Fernando, Mark Johnson, Stephen Gould

Abstract

Existing image captioning models do not generalize well to out-of-domain images containing novel scenes or objects. This limitation severely hinders the use of these models in real world applications dealing with images in the wild. We address this problem using a flexible approach that enables existing deep captioning architectures to take advantage of image taggers at test time, without re-training. Our method uses constrained beam search to force the inclusion of selected tag words in the output, and fixed, pretrained word embeddings to facilitate vocabulary expansion to previously unseen tag words. Using this approach we achieve state of the art results for out-of-domain captioning on MSCOCO (and improved results for in-domain captioning). Perhaps surprisingly, our results significantly outperform approaches that incorporate the same tag predictions into the learning algorithm. We also show that we can significantly improve the quality of generated ImageNet captions by leveraging ground-truth labels.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1612.00576

PDF

https://arxiv.org/pdf/1612.00576


Similar Posts

Comments