papers AI Learner
The Github is limit! Click to go to the new site.

Translating Phrases in Neural Machine Translation

2017-08-07
Xing Wang, Zhaopeng Tu, Deyi Xiong, Min Zhang

Abstract

Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from a phrase-based statistical machine translation (SMT) system into the encoder-decoder architecture of NMT. At each decoding step, the phrase memory is first re-written by the SMT model, which dynamically generates relevant target phrases with contextual information provided by the NMT model. Then the proposed model reads the phrase memory to make probability estimations for all phrases in the phrase memory. If phrase generation is carried on, the NMT decoder selects an appropriate phrase from the memory to perform phrase translation and updates its decoding state by consuming the words in the selected phrase. Otherwise, the NMT decoder generates a word from the vocabulary as the general NMT decoder does. Experiment results on the Chinese to English translation show that the proposed model achieves significant improvements over the baseline on various test sets.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1708.01980

PDF

https://arxiv.org/pdf/1708.01980


Comments

Content