papers AI Learner
The Github is limit! Click to go to the new site.

Automatically Generating Commit Messages from Diffs using Neural Machine Translation

2017-08-30
Siyuan Jiang, Ameer Armaly, Collin McMillan

Abstract

Commit messages are a valuable resource in comprehension of software evolution, since they provide a record of changes such as feature additions and bug repairs. Unfortunately, programmers often neglect to write good commit messages. Different techniques have been proposed to help programmers by automatically writing these messages. These techniques are effective at describing what changed, but are often verbose and lack context for understanding the rationale behind a change. In contrast, humans write messages that are short and summarize the high level rationale. In this paper, we adapt Neural Machine Translation (NMT) to automatically “translate” diffs into commit messages. We trained an NMT algorithm using a corpus of diffs and human-written commit messages from the top 1k Github projects. We designed a filter to help ensure that we only trained the algorithm on higher-quality commit messages. Our evaluation uncovered a pattern in which the messages we generate tend to be either very high or very low quality. Therefore, we created a quality-assurance filter to detect cases in which we are unable to produce good messages, and return a warning instead.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1708.09492

PDF

https://arxiv.org/pdf/1708.09492


Comments

Content