Abstract
We report results from the preliminary trials of Colibri, a dedicated fast-photometry array for the detection of small Kuiper belt objects through serendipitous stellar occultations. Colibri’s novel data processing pipeline analyzed 4000 star hours with two overlapping-field EMCCD cameras, detecting no Kuiper belt objects and one false positive occultation event in a high ecliptic latitude field. No occultations would be expected at these latitudes, allowing these results to provide a control sample for the upcoming main Colibri campaign. The empirical false positive rate found by the processing pipeline is consistent with the 0.002% simulation-determined false positive rate. We also describe Colibri’s software design, kernel sets for modeling stellar occultations, and method for retrieving occultation parameters from noisy diffraction curves. Colibri’s main campaign will begin in mid-2018, operating at a 40 Hz sampling rate.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1711.00358