papers AI Learner
The Github is limit! Click to go to the new site.

Near Human-Level Performance in Grammatical Error Correction with Hybrid Machine Translation

2018-04-16
Roman Grundkiewicz, Marcin Junczys-Dowmunt

Abstract

We combine two of the most popular approaches to automated Grammatical Error Correction (GEC): GEC based on Statistical Machine Translation (SMT) and GEC based on Neural Machine Translation (NMT). The hybrid system achieves new state-of-the-art results on the CoNLL-2014 and JFLEG benchmarks. This GEC system preserves the accuracy of SMT output and, at the same time, generates more fluent sentences as it typical for NMT. Our analysis shows that the created systems are closer to reaching human-level performance than any other GEC system reported so far.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1804.05945

PDF

https://arxiv.org/pdf/1804.05945


Comments

Content