Abstract
“Which Generative Adversarial Networks (GANs) generates the most plausible images?” has been a frequently asked question among researchers. To address this problem, we first propose an \emph{incomplete} U-statistics estimate of maximum mean discrepancy $\mathrm{MMD}{inc}tomeasurethedistributiondiscrepancybetweengeneratedandrealimages.\mathrm{MMD}{inc}enjoystheadvantagesofasymptoticnormality,computationefficiency,andmodelagnosticity.WethenproposeaGANsanalysisframeworktoselectandtestthe“best”memberinGANsfamilyusingthePostSelectionInference(PSI)with\mathrm{MMD}{inc}.Intheexperiments,weadopttheproposedframeworkon7GANsvariantsandcomparetheir\mathrm{MMD}{inc}$ scores.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1802.05411