papers AI Learner
The Github is limit! Click to go to the new site.

Real-time Detection, Tracking, and Classification of Moving and Stationary Objects using Multiple Fisheye Images

2018-08-31
Iljoo Baek, Albert Davies, Geng Yan, Ragunathan (Raj)Rajkumar

Abstract

The ability to detect pedestrians and other moving objects is crucial for an autonomous vehicle. This must be done in real-time with minimum system overhead. This paper discusses the implementation of a surround view system to identify moving as well as static objects that are close to the ego vehicle. The algorithm works on 4 views captured by fisheye cameras which are merged into a single frame. The moving object detection and tracking solution uses minimal system overhead to isolate regions of interest (ROIs) containing moving objects. These ROIs are then analyzed using a deep neural network (DNN) to categorize the moving object. With deployment and testing on a real car in urban environments, we have demonstrated the practical feasibility of the solution. The video demos of our algorithm have been uploaded to Youtube: this https URL, this https URL

Abstract (translated by Google)
URL

https://arxiv.org/abs/1803.06077

PDF

https://arxiv.org/pdf/1803.06077


Similar Posts

Comments