papers AI Learner
The Github is limit! Click to go to the new site.

Top-down Tree Structured Decoding with Syntactic Connections for Neural Machine Translation and Parsing

2018-09-06
Jetic Gū, Hassan S. Shavarani, Anoop Sarkar

Abstract

The addition of syntax-aware decoding in Neural Machine Translation (NMT) systems requires an effective tree-structured neural network, a syntax-aware attention model and a language generation model that is sensitive to sentence structure. We exploit a top-down tree-structured model called DRNN (Doubly-Recurrent Neural Networks) first proposed by Alvarez-Melis and Jaakola (2017) to create an NMT model called Seq2DRNN that combines a sequential encoder with tree-structured decoding augmented with a syntax-aware attention model. Unlike previous approaches to syntax-based NMT which use dependency parsing models our method uses constituency parsing which we argue provides useful information for translation. In addition, we use the syntactic structure of the sentence to add new connections to the tree-structured decoder neural network (Seq2DRNN+SynC). We compare our NMT model with sequential and state of the art syntax-based NMT models and show that our model produces more fluent translations with better reordering. Since our model is capable of doing translation and constituency parsing at the same time we also compare our parsing accuracy against other neural parsing models.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1809.01854

PDF

https://arxiv.org/pdf/1809.01854


Similar Posts

Comments