papers AI Learner
The Github is limit! Click to go to the new site.

Auto-Meta: Automated Gradient Based Meta Learner Search

2018-12-10
Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck Choi, Yongseok Choi, Dong-Yeon Cho, Jiwon Kim

Abstract

Fully automating machine learning pipelines is one of the key challenges of current artificial intelligence research, since practical machine learning often requires costly and time-consuming human-powered processes such as model design, algorithm development, and hyperparameter tuning. In this paper, we verify that automated architecture search synergizes with the effect of gradient-based meta learning. We adopt the progressive neural architecture search \cite{liu:pnas_google:DBLP:journals/corr/abs-1712-00559} to find optimal architectures for meta-learners. The gradient based meta-learner whose architecture was automatically found achieved state-of-the-art results on the 5-shot 5-way Mini-ImageNet classification problem with $74.65\%$ accuracy, which is $11.54\%$ improvement over the result obtained by the first gradient-based meta-learner called MAML \cite{finn:maml:DBLP:conf/icml/FinnAL17}. To our best knowledge, this work is the first successful neural architecture search implementation in the context of meta learning.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1806.06927

PDF

https://arxiv.org/pdf/1806.06927


Similar Posts

Comments