papers AI Learner
The Github is limit! Click to go to the new site.

GANs for Medical Image Analysis

2018-12-21
Salome Kazeminia, Christoph Baur, Arjan Kuijper, Bram van Ginneken, Nassir Navab, Shadi Albarqouni, Anirban Mukhopadhyay

Abstract

Generative Adversarial Networks (GANs) and their extensions have carved open many exciting ways to tackle well known and challenging medical image analysis problems such as medical image de-noising, reconstruction, segmentation, data simulation, detection or classification. Furthermore, their ability to synthesize images at unprecedented levels of realism also gives hope that the chronic scarcity of labeled data in the medical field can be resolved with the help of these generative models. In this review paper, a broad overview of recent literature on GANs for medical applications is given, the shortcomings and opportunities of the proposed methods are thoroughly discussed and potential future work is elaborated. We review the most relevant papers published until the submission date. For quick access, important details such as the underlying method, datasets and performance are tabulated. An interactive visualization categorizes all papers to keep the review alive.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1809.06222

PDF

https://arxiv.org/pdf/1809.06222


Similar Posts

Comments