Abstract
Cloud-based overlays are often present in optical remote sensing images, thus limiting the application of acquired data. Removing clouds is an indispensable pre-processing step in remote sensing image analysis. Deep learning has achieved great success in the field of remote sensing in recent years, including scene classification and change detection. However, deep learning is rarely applied in remote sensing image removal clouds. The reason is the lack of data sets for training neural networks. In order to solve this problem, this paper first proposed the Remote sensing Image Cloud rEmoving dataset (RICE). The proposed dataset consists of two parts: RICE1 contains 500 pairs of images, each pair has images with cloud and cloudless size of 512512; RICE2 contains 450 sets of images, each set contains three 512512 size images. , respectively, the reference picture without clouds, the picture of the cloud and the mask of its cloud. The dataset is freely available at \url{https://github.com/BUPTLdy/RICE_DATASET}.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1901.00600