papers AI Learner
The Github is limit! Click to go to the new site.

Demystifying Multi-Faceted Video Summarization: Tradeoff Between Diversity,Representation, Coverage and Importance

2019-01-03
Vishal Kaushal, Rishabh Iyer, Khoshrav Doctor, Anurag Sahoo, Pratik Dubal, Suraj Kothawade, Rohan Mahadev, Kunal Dargan, Ganesh Ramakrishnan

Abstract

This paper addresses automatic summarization of videos in a unified manner. In particular, we propose a framework for multi-faceted summarization for extractive, query base and entity summarization (summarization at the level of entities like objects, scenes, humans and faces in the video). We investigate several summarization models which capture notions of diversity, coverage, representation and importance, and argue the utility of these different models depending on the application. While most of the prior work on submodular summarization approaches has focused oncombining several models and learning weighted mixtures, we focus on the explainability of different models and featurizations, and how they apply to different domains. We also provide implementation details on summarization systems and the different modalities involved. We hope that the study from this paper will give insights into practitioners to appropriately choose the right summarization models for the problems at hand.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1901.01153

PDF

https://arxiv.org/pdf/1901.01153


Similar Posts

Comments