Abstract
The solution convergence of Markov Decision Processes (MDPs) can be accelerated by prioritized sweeping of states ranked by their potential impacts to other states. In this paper, we present new heuristics to speed up the solution convergence of MDPs. First, we quantify the level of reachability of every state using the Mean First Passage Time (MFPT) and show that such reachability characterization very well assesses the importance of states which is used for effective state prioritization. Then, we introduce the notion of backup differentials as an extension to the prioritized sweeping mechanism, in order to evaluate the impacts of states at an even finer scale. Finally, we extend the state prioritization to the temporal process, where only partial sweeping can be performed during certain intermediate value iteration stages. To validate our design, we have performed numerical evaluations by comparing the proposed new heuristics with corresponding classic baseline mechanisms. The evaluation results showed that our reachability based framework and its differential variants have outperformed the state-of-the-art solutions in terms of both practical runtime and number of iterations.
Abstract (translated by Google)
URL
https://arxiv.org/abs/1901.00921