papers AI Learner
The Github is limit! Click to go to the new site.

Near-Optimal Representation Learning for Hierarchical Reinforcement Learning

2019-01-09
Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine

Abstract

We study the problem of representation learning in goal-conditioned hierarchical reinforcement learning. In such hierarchical structures, a higher-level controller solves tasks by iteratively communicating goals which a lower-level policy is trained to reach. Accordingly, the choice of representation – the mapping of observation space to goal space – is crucial. To study this problem, we develop a notion of sub-optimality of a representation, defined in terms of expected reward of the optimal hierarchical policy using this representation. We derive expressions which bound the sub-optimality and show how these expressions can be translated to representation learning objectives which may be optimized in practice. Results on a number of difficult continuous-control tasks show that our approach to representation learning yields qualitatively better representations as well as quantitatively better hierarchical policies, compared to existing methods (see videos at https://sites.google.com/view/representation-hrl).

Abstract (translated by Google)
URL

http://arxiv.org/abs/1810.01257

PDF

http://arxiv.org/pdf/1810.01257


Similar Posts

Comments