Abstract
Hand segmentation and fingertip detection play an indispensable role in hand gesture-based human-machine interaction systems. In this study, we propose a method to discriminate hand components and to locate fingertips in RGB-D images. The system consists of three main steps: hand detection using RGB images providing regions which are considered as promising areas for further processing, hand segmentation, and fingertip detection using depth image and our modified SegNet, a single lightweight architecture that can process two independent tasks at the same time. The experimental results show that our system is a promising method for hand segmentation and fingertip detection which achieves a comparable performance while model complexity is suitable for real-time applications.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1901.03465