papers AI Learner
The Github is limit! Click to go to the new site.

Background subtraction on depth videos with convolutional neural networks

2019-01-17
Xueying Wang, Lei Liu, Guangli Li, Xiao Dong, Peng Zhao, Xiaobing Feng

Abstract

Background subtraction is a significant component of computer vision systems. It is widely used in video surveillance, object tracking, anomaly detection, etc. A new data source for background subtraction appeared as the emergence of low-cost depth sensors like Microsof t Kinect, Asus Xtion PRO, etc. In this paper, we propose a background subtraction approach on depth videos, which is based on convolutional neural networks (CNNs), called BGSNet-D (BackGround Subtraction neural Networks for Depth videos). The method can be used in color unavailable scenarios like poor lighting situations, and can also be applied to combine with existing RGB background subtraction methods. A preprocessing strategy is designed to reduce the influences incurred by noise from depth sensors. The experimental results on the SBM-RGBD dataset show that the proposed method outperforms existing methods on depth data.

Abstract (translated by Google)
URL

https://arxiv.org/abs/1901.05676

PDF

https://arxiv.org/pdf/1901.05676


Similar Posts

Comments