papers AI Learner
The Github is limit! Click to go to the new site.

RxNN: A Framework for Evaluating Deep Neural Networks on Resistive Crossbars

2019-01-18
Shubham Jain, Abhronil Sengupta, Kaushik Roy, Anand Raghunathan

Abstract

Resistive crossbars have emerged as promising building blocks for realizing DNNs due to their ability to compactly and efficiently realize the dominant DNN computational kernel, viz., vector-matrix multiplication. However, a key challenge with resistive crossbars is that they suffer from a range of device and circuit level non-idealities such as interconnect parasitics, peripheral circuits, sneak paths, and process variations. These non-idealities can lead to errors in vector-matrix multiplication that eventually degrade the DNN’s accuracy. There has been no study of the impact of non-idealities on the accuracy of large-scale DNNs, in part because existing device and circuit models are infeasible to use in application-level evaluation. In this work, we present a fast and accurate simulation framework to enable evaluation and re-training of large-scale DNNs on resistive crossbar based hardware fabrics. We first characterize the impact of crossbar non-idealities on errors incurred in the realized vector-matrix multiplications and observe that the errors have significant data and hardware-instance dependence that should be considered. We propose a Fast Crossbar Model (FCM) to accurately capture the errors arising due to crossbar non-idealities while being four-to-five orders of magnitude faster than circuit simulation. Finally, we develop RxNN, a software framework to evaluate and re-train DNNs on resistive crossbar systems. RxNN is based on the popular Caffe machine learning framework, and we use it to evaluate a suite of large-scale DNNs developed for the ImageNet Challenge (ILSVRC). Our experiments reveal that resistive crossbar non-idealities can lead to significant accuracy degradations (9.6%-32%) for these large-scale DNNs. To the best of our knowledge, this work is the first quantitative evaluation of the accuracy of large-scale DNNs on resistive crossbar based hardware.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1809.00072

PDF

http://arxiv.org/pdf/1809.00072


Similar Posts

Comments