papers AI Learner
The Github is limit! Click to go to the new site.

Towards Aggregating Weighted Feature Attributions

2019-01-20
Umang Bhatt, Pradeep Ravikumar, Jose M. F. Moura

Abstract

Current approaches for explaining machine learning models fall into two distinct classes: antecedent event influence and value attribution. The former leverages training instances to describe how much influence a training point exerts on a test point, while the latter attempts to attribute value to the features most pertinent to a given prediction. In this work, we discuss an algorithm, AVA: Aggregate Valuation of Antecedents, that fuses these two explanation classes to form a new approach to feature attribution that not only retrieves local explanations but also captures global patterns learned by a model. Our experimentation convincingly favors weighting and aggregating feature attributions via AVA.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1901.10040

PDF

http://arxiv.org/pdf/1901.10040


Similar Posts

Comments