papers AI Learner
The Github is limit! Click to go to the new site.

A GFML-based Robot Agent for Human and Machine Cooperative Learning on Game of Go

2019-01-22
Chang-Shing Lee, Mei-Hui Wang, Li-Chuang Chen, Yusuke Nojima, Tzong-Xiang Huang, Jinseok Woo, Naoyuki Kubota, Eri Sato-Shimokawara, Toru Yamaguchi

Abstract

This paper applies a genetic algorithm and fuzzy markup language to construct a human and smart machine cooperative learning system on game of Go. The genetic fuzzy markup language (GFML)-based Robot Agent can work on various kinds of robots, including Palro, Pepper, and TMUs robots. We use the parameters of FAIR open source Darkforest and OpenGo AI bots to construct the knowledge base of Open Go Darkforest (OGD) cloud platform for student learning on the Internet. In addition, we adopt the data from AlphaGo Master sixty online games as the training data to construct the knowledge base and rule base of the co-learning system. First, the Darkforest predicts the win rate based on various simulation numbers and matching rates for each game on OGD platform, then the win rate of OpenGo is as the final desired output. The experimental results show that the proposed approach can improve knowledge base and rule base of the prediction ability based on Darkforest and OpenGo AI bot with various simulation numbers.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1901.07191

PDF

http://arxiv.org/pdf/1901.07191


Similar Posts

Comments