Abstract
Convolutional neural networks (CNNs) have been successfully applied to solve the problem of correspondence estimation between semantically related images. Due to non-availability of large training datasets, existing methods resort to self-supervised or unsupervised training paradigm. In this paper we propose a semi-supervised learning framework that imposes cyclic consistency constraint on unlabeled image pairs. Together with the supervised loss the proposed model achieves state-of-the-art on a benchmark semantic matching dataset.
Abstract (translated by Google)
URL
http://arxiv.org/abs/1901.08339