papers AI Learner
The Github is limit! Click to go to the new site.

A Linear-complexity Multi-biometric Forensic Document Analysis System, by Fusing the Stylome and Signature Modalities

2019-01-26
Sayyed-Ali Hossayni, Yousef Alizadeh-Q, Vahid Tavana, Seyed M. Hosseini Nejad, Mohammad-R Akbarzadeh-T, Esteve Del Acebo, Josep Lluis De la Rosa i Esteva, Enrico Grosso, Massimo Tistarelli, Przemyslaw Kudlacik

Abstract

Forensic Document Analysis (FDA) addresses the problem of finding the authorship of a given document. Identification of the document writer via a number of its modalities (e.g. handwriting, signature, linguistic writing style (i.e. stylome), etc.) has been studied in the FDA state-of-the-art. But, no research is conducted on the fusion of stylome and signature modalities. In this paper, we propose such a bimodal FDA system (which has vast applications in judicial, police-related, and historical documents analysis) with a focus on time-complexity. The proposed bimodal system can be trained and tested with linear time complexity. For this purpose, we first revisit Multinomial Na"ive Bayes (MNB), as the best state-of-the-art linear-complexity authorship attribution system and, then, prove its superior accuracy to the well-known linear-complexity classifiers in the state-of-the-art. Then, we propose a fuzzy version of MNB for being fused with a state-of-the-art well-known linear-complexity fuzzy signature recognition system. For the evaluation purposes, we construct a chimeric dataset, composed of signatures and textual contents of different letters. Despite its linear-complexity, the proposed multi-biometric system is proven to meaningfully improve its state-of-the-art unimodal counterparts, regarding the accuracy, F-Score, Detection Error Trade-off (DET), Cumulative Match Characteristics (CMC), and Match Score Histograms (MSH) evaluation metrics.

Abstract (translated by Google)
URL

http://arxiv.org/abs/1902.02176

PDF

http://arxiv.org/pdf/1902.02176


Similar Posts

Comments